Clinical Trial, Phase I
Clinical Trial, Phase II
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Population pharmacokinetic-pharmacodynamic modeling of omecamtiv mecarbil, a cardiac myosin activator, in healthy volunteers and patients with stable heart failure.

Data from 3 clinical trials of omecamtiv mecarbil in healthy volunteers and patients with stable heart failure (HF) were analyzed using a nonlinear mixed-effects model to investigate omecamtiv mecarbil's pharmacokinetics and relationship between plasma concentration and systolic ejection time (SET) and Doppler-derived left ventricular outflow tract stroke volume (LVOTSV). Omecamtiv mecarbil pharmacokinetics were described by a linear 2-compartment model with a zero-order input rate for intravenous administration and first-order absorption for oral administration. Oral absorption half-life was 0.62 hours, and absolute bioavailability was estimated as 90%; elimination half-life was approximately 18.5 hours. Variability in pharmacokinetic parameters was not explained by patient baseline characteristics. Omecamtiv mecarbil plasma concentration was directly correlated with increases in SET and LVOTSV between healthy volunteers and patients with HF. The maximum increase from baseline in SET (delta SET) estimated by an Emax model was 137 milliseconds. LVOTSV increased linearly from baseline by 1.6 mL per 100 ng/mL of omecamtiv mecarbil. Model-based simulations for several immediate-release oral dose regimens (37.5, 50, and 62.5 mg dosed every 8, 12, and 24 hours) showed that a pharmacodynamic effect (delta SET ≥20 milliseconds) could be maintained in the absence of excessive omecamtiv mecarbil plasma concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app