JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells.

The epithelial cholinergic system plays an important role in water, ion and solute transport. Previous studies have shown that activation of muscarinic acetylcholine receptors (mAChRs) regulates paracellular transport of epithelial cells; however, the underlying mechanism is still largely unknown. Here, we found that mAChR activation by carbachol and cevimeline reduced the transepithelial electrical resistance (TER) and increased the permeability of paracellular tracers in rat salivary epithelial SMG-C6 cells. Carbachol induced downregulation and redistribution of claudin-4, but not occludin or ZO-1 (also known as TJP1). Small hairpin RNA (shRNA)-mediated claudin-4 knockdown suppressed, whereas claudin-4 overexpression retained, the TER response to carbachol. Mechanistically, the mAChR-modulated claudin-4 properties and paracellular permeability were triggered by claudin-4 phosphorylation through ERK1/2 (also known as MAPK3 and MAPK1, respectively). Mutagenesis assay demonstrated that S195, but not S199, S203 or S207, of claudin-4, was the target for carbachol. Subsequently, the phosphorylated claudin-4 interacted with β-arrestin2 and triggered claudin-4 internalization through the clathrin-dependent pathway. The internalized claudin-4 was further degraded by ubiquitylation. Taken together, these findings suggested that claudin-4 is required for mAChR-modulated paracellular permeability of epithelial cells through an ERK1/2, β-arrestin2, clathrin and ubiquitin-dependent signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app