Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fluorescent Visualisation of Oxytocin in the Hypothalamo-neurohypophysial/-spinal Pathways After Chronic Inflammation in Oxytocin-Monomeric Red Fluorescent Protein 1 Transgenic Rats.

Oxytocin (OXT) is a well-known neurohypophysial hormone that is synthesised in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus. The projection of magnocellular neurosecretory cells, which synthesise OXT and arginine vasopressin in the PVN and SON, to the posterior pituitary plays an essential role in mammalian labour and lactation through its peripheral action. However, previous studies have shown that parvocellular OXTergic cells in the PVN, which project to the medulla and spinal cord, are involved in various physiological functions (e.g. sensory modulation and autonomic). In the present study, we examined OXT expression in the PVN, SON and spinal cord after chronic inflammation from adjuvant arthritis (AA). We used transgenic rats that express OXT and the monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualise both the magnocellular and parvocellular OXTergic pathways. OXT-mRFP1 fluorescence intensity was significantly increased in the PVN, SON, dorsal horn of the spinal cord and posterior pituitary in AA rats. The levels of OXT-mRFP1 mRNA were significantly increased in the PVN and SON of AA rats. These results suggested that OXT was up-regulated in both hypothalamic magnocellular neurosecretory cells and parvocellular cells by chronic inflammation, and also that OXT in the PVN-spinal pathway may be involved in sensory modulation. OXT-mRFP1 transgenic rats are a very useful model for visualising the OXTergic pathways from vesicles in a single cell to terminals in in vitro preparations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app