Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influence of different surface modification treatments on silk biotextiles for tissue engineering applications.

Biotextile structures from silk fibroin have demonstrated to be particularly interesting for tissue engineering (TE) applications due to their high mechanical strength, interconnectivity, porosity, and ability to degrade under physiological conditions. In this work, we described several surface treatments of knitted silk fibroin (SF) scaffolds, namely sodium hydroxide (NaOH) solution, ultraviolet radiation exposure in an ozone atmosphere (UV/O3) and oxygen (O2) plasma treatment followed by acrylic acid (AAc), vinyl phosphonic acid (VPA), and vinyl sulfonic acid (VSA) immersion. The effect of these treatments on the mechanical properties of the textile constructs was evaluated by tensile tests in dry and hydrated states. Surface properties such as morphology, topography, wettability and elemental composition were also affected by the applied treatments. The in vitro biological behavior of L929 fibroblasts revealed that cells were able to adhere and spread both on the untreated and surface-modified textile constructs. The applied treatments had different effects on the scaffolds' surface properties, confirming that these modifications can be considered as useful techniques to modulate the surface of biomaterials according to the targeted application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app