Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Sprouty2 Drives Drug Resistance and Proliferation in Glioblastoma.

UNLABELLED: Glioblastoma multiforme (GBM) is notoriously resistant to therapy, and the development of a durable cure will require the identification of broadly relevant regulators of GBM cell tumorigenicity and survival. Here, we identify Sprouty2 (SPRY2), a known regulator of receptor tyrosine kinases (RTK), as one such regulator. SPRY2 knockdown reduced proliferation and anchorage-independent growth in GBM cells and slowed xenograft tumor growth in mice. SPRY2 knockdown also promoted cell death in response to coinhibition of the epidermal growth factor receptor (EGFR) and the c-MET receptor in GBM cells, an effect that involved regulation of the ability of the p38 mitogen-activated protein kinase (MAPK) to drive cell death in response to inhibitors. Analysis of data from clinical tumor specimens further demonstrated that SPRY2 protein is definitively expressed in GBM tissue, that SPRY2 expression is elevated in GBM tumors expressing EGFR variant III (EGFRvIII), and that elevated SPRY2 mRNA expression portends reduced GBM patient survival. Overall, these results identify SPRY2 and the pathways it regulates as novel candidate biomarkers and therapeutic targets in GBM.

IMPLICATIONS: SPRY2, counter to its roles in other cancer settings, promotes glioma cell and tumor growth and cellular resistance to targeted inhibitors of oncogenic RTKs, thus making SPRY2 and the cell signaling processes it regulates potential novel therapeutic targets in glioma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app