Add like
Add dislike
Add to saved papers

Comparison of two electrophysiological methods for the assessment of progress in a rat model of nerve repair.

There are 2 critical steps in neural regeneration: nerve fibres successfully crossing the suture and restoration of neuromuscular transmission. For the second step, the compound muscle action potential (CMAP) is the standard electrophysiological technique used to assess regeneration, but it is difficult to detect changes in the CMAP during early regeneration after nerve repair. There is a need for better, noninvasive quantitative electrophysiological techniques to assess regeneration in an earlier stage after nerve repair. In this study, we utilized 2 measures, CMAP and single-fibre electromyography (SFEMG), in a rat model of nerve repair. The model was generated by separating the sciatic nerve of the rat hindlimb from the tibial nerve in Sprague-Dawley rats. CMAP and SFEMG were measured in each rat at 1, 2, 3, 4, and 6 weeks after the operation. The muscle weight was measured and both the general structure of the muscle and the changes in muscle atrophy were examined using haematoxylin and eosin staining protocols. The nerve electrophysiological data could be detected at 2 weeks after surgery initially and more data could be collected with passing time. During the period ranging from 2 to 4 weeks after surgery, parameters of SFEMG recordings changed significantly while the CMAP amplitude did not increase until 6 weeks after surgery. While the fibre density (FD) at 2 weeks after surgery was 0.27 ± 0.31, there was a significant increase at 3 weeks relative to 2 weeks (P < 0.01), and the FD increased further at 4 weeks (P < 0.01). The action potential mean consecutive difference (MCD) was significantly higher (60.50 ± 3.53 μs) in the second week relative to the third week (41.12 ± 5.08 μs) after the operation. The results indicated that SFEMG was more sensitive than CMAP amplitudes in detecting neuromuscular transmission after nerve repair. The findings of nerve electrophysiological experiments were consistent with the observed degree of muscle recovery. The SFEMG can be used to detect the very early reinnervation of the muscle more sensitively than CMAP. The ratio of affected muscle weight to unaffected muscle weight was decreased at 2 weeks after surgery (59.01%), continued to decrease significantly at 3 weeks (51.24%), and was restored at 6 weeks. A combination of SFEMG and CMAP can show the dynamic progression of the muscle reinnervation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app