Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Trauma in silico: Individual-specific mathematical models and virtual clinical populations.

Trauma-induced critical illness is driven by acute inflammation, and elevated systemic interleukin-6 (IL-6) after trauma is a biomarker of adverse outcomes. We constructed a multicompartment, ordinary differential equation model that represents a virtual trauma patient. Individual-specific variants of this model reproduced both systemic inflammation and outcomes of 33 blunt trauma survivors, from which a cohort of 10,000 virtual trauma patients was generated. Model-predicted length of stay in the intensive care unit, degree of multiple organ dysfunction, and IL-6 area under the curve as a function of injury severity were in concordance with the results from a validation cohort of 147 blunt trauma patients. In a subcohort of 98 trauma patients, those with high-IL-6 single-nucleotide polymorphisms (SNPs) exhibited higher plasma IL-6 levels than those with low IL-6 SNPs, matching model predictions. Although IL-6 could drive mortality in individual virtual patients, simulated outcomes in the overall cohort were independent of the propensity to produce IL-6, a prediction verified in the 98-patient subcohort. In silico randomized clinical trials suggested a small survival benefit of IL-6 inhibition, little benefit of IL-1β inhibition, and worse survival after tumor necrosis factor-α inhibition. This study demonstrates the limitations of extrapolating from reductionist mechanisms to outcomes in individuals and populations and demonstrates the use of mechanistic simulation in complex diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app