Journal Article
Review
Add like
Add dislike
Add to saved papers

A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development.

Clinical Biochemistry 2015 November
OBJECTIVE: N-acetylcysteine (NAC), a cysteine pro-drug and glutathione precursor has been used in therapeutic practices for several decades, as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication. There is a growing interest concerning the beneficial effects of NAC against the early stages of type-2 diabetes development. Nevertheless, the mechanisms underlying the therapeutic and clinical applications of NAC are not fully understood. In this review we aimed to focus on the protective effects of NAC against insulin resistance.

DESIGN AND METHODS: The possible mechanisms of action were reviewed using the major findings of more than 100 papers relating to the antioxidant, anti-inflammatory and anti-apoptotic properties of NAC.

RESULTS: The anti-oxidative activity of NAC has been attributed to its fast reactions with free radicals as well as the restitution of reduced glutathione. Further, NAC has anti-inflammatory and anti-apoptotic properties which can have positive effects during the inflammatory process in insulin resistance. Moreover, NAC can modulate certain signaling pathways in both insulin target cells and β cells.

CONCLUSIONS: The diverse biological effects of NAC may make it a potential adjuvant or therapeutic target in the treatment of type-2 diabetes. So, further studies are required for determining its ability to alleviate insulin resistance and to improve insulin sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app