JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

15,16-Dihydrotanshinone I suppresses IgE-Ag stimulated mouse bone marrow-derived mast cell activation by inhibiting Syk kinase.

ETHNOPHARMACOLOGICAL RELEVANCE: 15,16-Dihydrotanshinone I (DHT-I), isolated from the dried root of Salvia miltiorrhiza Bung, which is traditionally used to treat cardiovascular and inflammatory diseases agent in Chinese medicine. DHT-I has been reported to have a broad range of biological activities, including antibacterial activity, and has been used to treat circulatory disorders, hepatitis, inflammation, cancer, and neurodegenerative diseases.

AIM OF THE STUDY: The aim of this study was to evaluate the anti-allergic inflammatory effects of DHT-I on degranulation and on the generation of eicosanoids, such as, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4), in IgE/Ag-stimulated bone marrow-derived mast cells (BMMCs).

MATERIALS AND METHODS: The anti-allergic inflammatory activity of DHT-I was evaluated using BMMCs. The effects of DHT-I on mast cell activation were investigated by following degranulation and eicosanoid generation using ELISA and immunoblotting and immunoprecipitation techniques.

RESULTS: DHT-I at a concentration of 20μM markedly inhibited degranulation and the generation of PGD2 and LTC4 in IgE/Ag-stimulated BMMCs (about 90% inhibitions, respectively). Analyses of FcεRI-mediated signaling pathways demonstrated that DHT-I inhibited the phosphorylations of spleen tyrosine kinase (Syk) and linker for activation of T cells (LAT), and inhibited downstream signaling process, including [Ca(2+)]i mobilization induced by the phosphorylation of phospholipase Cγ1 (PLCγ1), and the activations of mitogen-activated protein kinases (MAPKs) and the Akt-nuclear factor-κB (NF-κB) pathway.

CONCLUSIONS: DHT-1 inhibits the release of allergic inflammatory mediators from IgE/Ag-stimulated mast cells by suppressing a FcεRI-mediated Syk-dependent signal pathway. This result suggests DHT-I offers a novel developmental basis for drugs targeting allergic inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app