JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Subthalamic nucleus stimulation improves Parkinsonian gait via brainstem locomotor centers.

BACKGROUND: Subthalamic deep brain stimulation (STN-DBS) can ameliorate gait disturbances in Parkinson's disease (PD). Using motor imagery and positron emission tomography (PET), we investigated how STN-DBS interacts with supraspinal locomotor centers in PD.

METHODS: Ten PD patients with bilateral STN-DBS actually walked or stood still under STN-DBS ON or OFF conditions. Directly thereafter, subjects imagined walking or standing while changes in regional cerebral blood flow were measured by PET.

RESULTS: Independent of STN-DBS, imagined walking distance correlated with imagery duration. Compared with STN-DBS OFF, STN-DBS ON improved actual gait and increased imagined walking distance. Imagery of gait (vs. stance) induced activity in the supplementary motor area and the right superior parietal lobule for both STN-DBS conditions. The improvement of imagined gait during STN-DBS ON led to activity changes in the pedunculopontine nucleus/mesencephalic locomotor region (PPN/MLR).

CONCLUSIONS: Data suggest that STN-DBS improves Parkinsonian gait by modulating PPN/MLR activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app