Add like
Add dislike
Add to saved papers

Pavlovian conditioning enhances resistance to disruption of dogs performing an odor discrimination.

Domestic dogs are used to aid in the detection of a variety of substances such as narcotics and explosives. Under real-world detection situations there are many variables that may disrupt the dog's performance. Prior research on behavioral momentum theory suggests that higher rates of reinforcement produce greater resistance to disruption, and that this is heavily influenced by the stimulus-reinforcer relationship. The present study tests the Pavlovian interpretation of resistance to change using dogs engaged in an odor discrimination task. Dogs were trained on two odor discriminations that alternated every six trials akin to a multiple schedule in which the reinforcement probability for a correct response was always 1. Dogs then received several sessions of either odor Pavlovian conditioning to the S+ of one odor discrimination (Pavlovian group) or explicitly unpaired exposure to the S+ of one odor discrimination (Unpaired group). The remaining odor discrimination pair for each dog always remained an unexposed control. Resistance to disruption was assessed under presession feeding, a food-odor disruptor condition, and extinction, with baseline sessions intervening between disruption conditions. Equivalent baseline detection rates were observed across experimental groups and odorant pairs. Under disruption conditions, Pavlovian conditioning led to enhanced resistance to disruption of detection performance compared to the unexposed control odor discrimination. Unpaired odor conditioning did not influence resistance to disruption. These results suggest that changes in Pavlovian contingencies are sufficient to influence resistance to change.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app