Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

5-HT1B autoreceptors differentially modulate the expression of conditioned fear in a circuit-specific manner.

Neuroscience 2015 July 10
Located in the nerve terminals of serotonergic neurons, 5-HT1B autoreceptors are poised to modulate synaptic 5-HT levels with precise temporal and spatial control, and play an important role in various emotional behaviors. This study characterized two novel, complementary viral vector strategies to investigate the contribution of 5-HT1B autoreceptors to fear expression, displayed as freezing, during contextual fear conditioning. Increased expression of 5-HT1B autoreceptors throughout the brain significantly decreased fear expression in both wild-type (WT) and 5-HT1B knockout (1BKO) mice when receptor levels were increased with a cell-type-specific herpes simplex virus (HSV) vector injected into the dorsal raphe nucleus (DRN). Additional studies used an intersectional viral vector strategy, in which an adeno-associated virus containing a double-floxed inverted sequence for the 5-HT1B receptor (AAV-DIO-1B) was combined with the retrogradely transported canine adenovirus-2 expressing Cre (CAV-Cre) in order to increase 5-HT1B autoreceptor expression only in neurons projecting from the DRN to the amygdala. Surprisingly, selective expression of 5-HT1B autoreceptors in just this circuit led to an increase in fear expression in WT, but not 1BKO, mice. These results suggest that activation of 5-HT1B autoreceptors throughout the brain may have an overall effect of attenuating fear expression, but activation of subsets of 5-HT1B autoreceptors in particular brain regions, reflecting distinct projections of serotonergic neurons from the DRN, may have disparate contributions to the ultimate response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app