Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial.

Diabetologia 2015 July
AIM/HYPOTHESIS: Dietary polyphenols and long chain n-3 polyunsaturated fatty acids (LCn3) are associated with lower cardiovascular risk. This may relate to their influence on glucose metabolism and diabetes risk. We evaluated the effects of diets naturally rich in polyphenols and/or LCn3 of marine origin on glucose metabolism in people at high cardiometabolic risk.

METHODS: According to a 2 × 2 factorial design, individuals with high waist circumference and at least one more component of the metabolic syndrome were recruited at the obesity outpatient clinic. Eighty-six participants were randomly assigned by MINIM software to an isoenergetic diet: (1) control, low in LCn3 and polyphenol (analysed n = 20); (2) rich in LCn3 (n = 19); (3) rich in polyphenols (n = 19); or (4) rich in LCn3 and polyphenols (n = 19). The assigned diets were known for the participants and blinded for people doing measurements. Before and after the 8 week intervention, participants underwent a 3 h OGTT and a test meal with a similar composition as the assigned diet for the evaluation of plasma glucose, insulin and glucagon-like peptide 1 (GLP-1) concentrations, and indices of insulin sensitivity and beta cell function.

RESULTS: During OGTT, polyphenols significantly reduced plasma glucose total AUC (p = 0.038) and increased early insulin secretion (p = 0.048), while LCn3 significantly reduced beta cell function (p = 0.031) (two-factor ANOVA). Moreover, polyphenols improved post-challenge oral glucose insulin sensitivity (OGIS; p = 0.05 vs control diet by post hoc ANOVA). At test meal, LCn3 significantly reduced GLP-1 total postprandial AUC (p < 0.001; two-factor ANOVA).

CONCLUSION/INTERPRETATION: Diets naturally rich in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk. The implications of the decrease in insulin secretion and postprandial GLP-1 observed with diets rich in marine LCn3 need further clarification.

TRIAL REGISTRATION: ClinicalTrials.gov NCT01154478.

FUNDING: The trial was funded by European Community's Seventh Framework Programme FP7/2009-2012 under grant agreement FP7-KBBE-222639, Etherpaths Project and 'Ministero Istruzione Università e Ricerca' PRIN 2010-2011 - 2010JCWWKM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app