Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

9-Hydroxycanthin-6-one, a β-Carboline Alkaloid from Eurycoma longifolia, Is the First Wnt Signal Inhibitor through Activation of Glycogen Synthase Kinase 3β without Depending on Casein Kinase 1α.

Wnt signaling regulates various processes such as cell proliferation, differentiation, and embryo development. However, numerous diseases have been attributed to the aberrant transduction of Wnt signaling. We screened a plant extract library targeting TCF/β-catenin transcriptional modulating activity with a cell-based luciferase assay. Activity-guided fractionation of the MeOH extract of the E. longifolia root led to the isolation of 9-hydroxycanthin-6-one (1). Compound 1 exhibited TCF/β-catenin inhibitory activity. Compound 1 decreased the expression of Wnt signal target genes, mitf and zic2a, in zebrafish embryos. Treatment of SW480 cells with 1 decreased β-catenin and increased phosphorylated β-catenin (Ser 33, 37, Tyr 41) protein levels. The degradation of β-catenin by 1 was suppressed by GSK3β-siRNA, while compound 1 decreased β-catenin even in the presence of CK1α-siRNA. These results suggest that 1 inhibits Wnt signaling through the activation of GSK3β independent of CK1α.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app