JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Improved regeneration potential of fibroblasts using ascorbic acid-blended nanofibrous scaffolds.

Two-dimensional scaffolds, three-dimensional scaffolds, and dermal substitutes are extensively used for biomedical applications in skin tissue regeneration. Not much explored synthetic polymers, like poly(l-lactic acid)-co-poly-(ε-caprolactone) (PLACL), natural polymers, like silk fibroin (SF), and active inducing agents, such as ascorbic acid (AA) and tetracycline hydrochloride (TCH), represent a favorable matrix for fabricating dermal substitutes to engineer artificial skin for wound repair. The profligate nature of residing skin cells near the wound site is a paramount to survival and also regulating stem cells and other cellular networks and mechanical forces. PLACL/SF/TCH/AA nanofibrous scaffolds were fabricated by electrospinning and characterized for fiber morphology, membrane porosity, wettability, and significant subchains using Fourier transform infrared spectroscopy for culturing human-derived dermal fibroblasts. The PLACL, PLACL/SF, PLACL/SF/TCH, and PLACL/SF/TCH/AA scaffolds obtained diameters between 250 and 340 nm. The secretion of collagen by the laboratory-grown fibroblasts over the AA-blended scaffolds was found to be significantly higher compared with that of other scaffolds. The obtained results positively prove that introduction of naturally secreting compounds (AA) by the cells into the nanofibrous scaffolds will favor cell's microenvironment and eventually leads to complete tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app