JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Serum Very-Low-Density Lipoprotein Serves as a Restriction Factor against Hepatitis C Virus Infection.

UNLABELLED: Recent studies demonstrated that transgenic mice expressing key human hepatitis C virus (HCV) receptors are susceptible to HCV infection, albeit at very low efficiency. Robust mouse models of HCV infection and replication are needed to determine the importance of host factors in HCV replication, pathogenesis, and carcinogenesis as well as to facilitate the development of antiviral agents and vaccines. The low efficiency of HCV replication in the humanized mouse models is likely due to either the lack of essential host factors or the presence of restriction factors for HCV infection and/or replication in mouse hepatocytes. To determine whether HCV infection is affected by restriction factors present in serum, we examined the effects of mouse and human sera on HCV infectivity. Strikingly, we found that mouse and human sera potently inhibited HCV infection. Mechanistic studies demonstrated that mouse serum blocked HCV cell attachment without significant effect on HCV replication. Fractionation analysis of mouse serum in conjunction with targeted mass spectrometric analysis suggested that serum very-low-density lipoprotein (VLDL) was responsible for the blockade of HCV cell attachment, as VLDL-depleted mouse serum lost HCV-inhibitory activity. Both purified mouse and human VLDL could efficiently inhibit HCV infection. Collectively, these findings suggest that serum VLDL serves as a major restriction factor of HCV infection in vivo. The results also imply that reduction or elimination of VLDL production will likely enhance HCV infection in the humanized mouse model of HCV infection and replication.

IMPORTANCE: HCV is a major cause of liver diseases, such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Recently, several studies suggested that humanized mouse or transgenic mouse expressing key HCV human receptors became susceptible to HCV infection. However, HCV infection and replication in the humanized animals were very inefficient, suggesting either the lack of cellular genes important for HCV replication or the presence of restriction factors inhibiting HCV infection and replication in the mouse. In this study, we found that both mouse and human sera effectively inhibited HCV infection. Mechanistic studies demonstrated that VLDL is the major restriction factor that blocks HCV infection. These findings suggest that VLDL is beneficial to patients by restricting HCV infection. More importantly, our findings suggest that elimination of VLDL will lead to the development of more robust mouse models for the study of HCV pathogenesis, host response to HCV infection, and evaluation of HCV vaccines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app