JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Cellular events of strigolactone signalling and their crosstalk with auxin in roots.

Strigolactones are a new group of plant hormones that suppress shoot branching. In roots, they regulate primary-root growth and lateral-root formation and increase root-hair elongation. Reception of strigolactones occurs via a specific cellular system which includes a D14-like/MAX2-like/SCF complex that, upon perception of strigolactone signalling, leads to certain degradation of receptors and to the release of downstream targets. This signalling pathway may eventually result in changes in actin-filament bundling, cellular trafficking, and PIN localization in the plasma membrane. As a result, auxin flux may be regulated in the shoot or root. Strigolactones are also involved with the response to phosphate conditions in roots, acting by both dampening auxin transport via depletion of PIN2 from the plasma membrane and inducing TIR1 transcription to increase auxin perception. In these instances and, possibly, others, strigolactones manipulate the auxin pathway, affecting its transport, perception or both. However, other mechanisms for strigolactone-regulated plant development and the involvement of other plant hormones are evident.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app