JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO.

Magnesium (Mg) alloys have been suggested as biodegradable bone implant materials due to their good intrinsic biocompatibility and great mechanical properties. Although magnesium has attractive properties as an orthopedic implant material, its quick degradation and low bioactivity may lead to the loss of mechanical integrity of the implant during the bone healing process. In this paper, we endeavor to surmount the abovementioned defects using the surface coating technique. We have recently coated AZ91 magnesium implants with merwinite (Ca3MgSi2O8) through the coupling of plasma electrolytic oxidation (PEO) and electrophoretic deposition method. In this work, we are specifically focused on the in vivo examinations of the coated implants in comparison with the uncoated one. For the in vivo experiment, the rod samples, including the uncoated and merwinite/PEO coated implants, were imbedded into the greater trochanter of rabbits. The results of the in vivo animal test indicated an improvement in biodegradability including slower implant weight loss, reduction in Mg ion released from the coated implants in the blood plasma, lesser release of hydrogen bubbles and an improvement in biocompatibility including an increase in the amount of bone formation and ultimately a mild bone inflammation after the surgery according to the histological images. In summary, proper surface treatment of magnesium implants such as silicate bioactive ceramics may improve their biocompatibility under physiological conditions to making them suitable and applicable for future clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app