JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel chimeric aequorin fused with caveolin-1 reveals a sphingosine kinase 1-regulated Ca²⁺ microdomain in the caveolar compartment.

Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar calcium signaling have not been investigated. We generated a Caveolin-1-Aequorin fusion protein (Cav1-Aeq) that can be employed for monitoring the local calcium concentration at the caveolae ([Ca²⁺]cav). In HeLa cells, Cav1-Aeq reported different [Ca²⁺] as compared to the plasma membrane [Ca²⁺] in general (reported by SNAP25-Aeq) or as compared to the cytosolic [Ca²⁺] (reported by cyt-Aeq). The Ca²⁺ signals detected by Cav1-Aeq were significantly attenuated when the caveolar structures were disrupted by methyl-β-cyclodextrin, suggesting that the caveolae are specific targets for Ca²⁺ signaling. HeLa cells overexpressing SK1 showed increased [Ca²⁺]cav during histamine-induced Ca²⁺ mobilization in the absence of extracellular Ca²⁺ as well as during receptor-operated Ca²⁺ entry (ROCE). The SK1-induced increase in [Ca²⁺]cav during ROCE was reverted by S1P receptor antagonists. In accordance, pharmacologic inhibition of SK1 reduced the [Ca²⁺]cav during ROCE. S1P treatment stimulated the [Ca²⁺]cav upon ROCE. The Ca²⁺ responses at the plasma membrane in general were not affected by SK1 expression. In summary, our results show that SK1/S1P-signaling regulates Ca²⁺ signals at the caveolae. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app