Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electrochemical detection of low concentrations of mercury in water using gold nanoparticles.

The electrochemical detection of mercury in aqueous solutions was studied at glassy carbon (GC) and indium-tin oxide (ITO) electrodes modified by gold nanoparticles (Au NPs). Two methods of modification were used: electrochemical reduction of HAuCl4 and electrostatic adsorption of Au NPs stabilized by citrate. We found that the Au NPs modified surfaces yielded higher sensitivity and sharper and more reproducible stripping peaks of Hg as compared with the bare electrodes. The effect of the modification by Au NPs on the stripping potential was examined. Interestingly, the stripping of Hg on GC and ITO modified by Au NPs occurred at the same potential as on bare GC and ITO, respectively. Only the full coverage of ITO by either electrochemically deposited Au for a long time or by vapor deposition, shifted the stripping potential more positive by ca. 0.4 V to that observed on a bare Au electrode. These and further experiments led us to conclude that the Au NPs served as nucleation sites for the deposition of Hg, whereas the GC or ITO are superior for the stripping of mercury. Hence, a combination of well-defined Au NPs on ITO or GC were found ideal for the electrochemical detection of Hg. Indeed, we achieved a remarkable detection limit of 1 μm·L(-1) of Hg using an ITO surface modified by electrostatically adsorbed Au NPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app