JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Insight into the role of alternative splicing within the RBM10v1 exon 10 tandem donor site.

BACKGROUND: RBM10 is an RNA binding protein involved in the regulation of transcription, alternative splicing and message stabilization. Mutations in RBM10, which maps to the X chromosome, are associated with TARP syndrome, lung and pancreatic cancers. Two predominant isoforms of RBM10 exist, RBM10v1 and RBM10v2. Both variants have alternate isoforms that differ by one valine residue, at amino acid 354 (RBM10v1) or 277 (RBM10v2). It was recently observed that a novel point mutation at amino acid 354 of RBM10v1, replacing valine with glutamic acid, correlated with preferential expression of an exon 11 inclusion variant of the proliferation regulatory protein NUMB, which is upregulated in lung cancer.

FINDINGS: We demonstrate, using the GLC20 male-derived small cell lung cancer cell line - confirmed to have only one X chromosome - that the two (+/-) valine isoforms of RBM10v1 and RBM10v2 result from alternative splicing. Protein modeling of the RNA Recognition Motif (RRM) within which the alteration occurs, shows that the presence of valine inhibits the formation of one of the two α-helices associated with RRM tertiary structure, whereas the absence of valine supports the α-helical configuration. We then show 2-fold elevated expression of the transcripts encoding the minus valine RBM10v1 isoform in GLC20 cells, compared to those encoding the plus valine isoform. This expression correlates with preferential expression of the lung cancer-associated NUMB exon 11 inclusion variant.

CONCLUSIONS: Our observations suggest that the ability of RBM10v1 to regulate alternative splicing depends, at least in part, on a structural alteration within the second RRM domain, which influences whether RBM10v1 functions to support or repress splicing. A model is presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app