JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Nanotechnology and neurophysiology.

Neuroscience would be revolutionized by a technique to measure intracellular electrical potentials that would not disrupt cellular physiology and could be massively parallelized. Though such a technology does not yet exist, the technical hurdles for fabricating minimally disruptive, solid-state electrical probes have arguably been overcome in the field of nanotechnology. Nanoscale devices can be patterned with features on the same length scale as biological components, and several groups have demonstrated that nanoscale electrical probes can measure the transmembrane potential of electrogenic cells. Developing these nascent technologies into robust intracellular recording tools will now require a better understanding of device-cell interactions, especially the membrane-inorganic interface. Here we review the state-of-the art in nanobioelectronics, emphasizing the characterization and design of stable interfaces between nanoscale devices and cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app