JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Predictive modeling in pediatric traumatic brain injury using machine learning.

BACKGROUND: Pediatric traumatic brain injury (TBI) constitutes a significant burden and diagnostic challenge in the emergency department (ED). While large North American research networks have derived clinical prediction rules for the head injured child, these may not be generalizable to practices in countries with traditionally low rates of computed tomography (CT). We aim to study predictors for moderate to severe TBI in our ED population aged < 16 years.

METHODS: This was a retrospective case-control study based on data from a prospective surveillance head injury database. Cases were included if patients presented from 2006 to 2014, with moderate to severe TBI. Controls were age-matched head injured children from the registry, obtained in a 4 control: 1 case ratio. These children remained well on diagnosis and follow up. Demographics, history, and physical examination findings were analyzed and patients followed up for the clinical course and outcome measures of death and neurosurgical intervention. To predict moderate to severe TBI, we built a machine learning (ML) model and a multivariable logistic regression model and compared their performances by means of Receiver Operating Characteristic (ROC) analysis.

RESULTS: There were 39 cases and 156 age-matched controls. The following 4 predictors remained statistically significant after multivariable analysis: Involvement in road traffic accident, a history of loss of consciousness, vomiting and signs of base of skull fracture. The logistic regression model was created with these 4 variables while the ML model was built with 3 extra variables, namely the presence of seizure, confusion and clinical signs of skull fracture. At the optimal cutoff scores, the ML method improved upon the logistic regression method with respect to the area under the ROC curve (0.98 vs 0.93), sensitivity (94.9% vs 82.1%), specificity (97.4% vs 92.3%), PPV (90.2% vs 72.7%), and NPV (98.7% vs 95.4%).

CONCLUSIONS: In this study, we demonstrated the feasibility of using machine learning as a tool to predict moderate to severe TBI. If validated on a large scale, the ML method has the potential not only to guide discretionary use of CT, but also a more careful selection of head injured children who warrant closer monitoring in the hospital.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app