Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PAT1 inversely regulates the surface Amyloid Precursor Protein level in mouse primary neurons.

BACKGROUND: The amyloid precursor protein (APP) is a key molecule in Alzheimer disease. Its localization at the cell surface can trigger downstream signaling and APP cleavages. APP trafficking to the cell surface in neurons is not clearly understood and may be related to the interactions with its partners. In this respect, by having homologies with kinesin light chain domains and because of its capacity to bind APP, PAT1 represents a good candidate.

RESULTS: We observed that PAT1 binds poorly APP at the cell surface of primary cortical neurons contrary to cytoplasmic APP. Using down and up-regulation of PAT1, we observed respectively an increase and decrease of APP at the cell surface. The increase of APP at the cell surface induced by low levels of PAT1 did not trigger cell death signaling.

CONCLUSIONS: These data suggest that PAT1 slows down APP trafficking to the cell surface in primary cortical neurons. Our results contribute to the elucidation of mechanisms involved in APP trafficking in Alzheimer disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app