Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Effect of percutaneous nucleoplasty with coblation on phospholipase A2 activity in the intervertebral disks of an animal model of intervertebral disk degeneration: a randomized controlled trial.

BACKGROUND: This randomized controlled trial was carried out to (1) evaluate the effect of nucleoplasty with coblation on the PLA2 activity in the degenerative intervertebral disks of an animal model and (2) explore the possible therapeutic mechanism of coblation in addition to the current theory, which focuses on decreasing the intradiskal pressure in the treatment of intervertebral disk degeneration.

METHODS: Thirty-six animal models of intervertebral disk degeneration were successfully established and then randomly divided into two groups: the coblation group (n = 18) and coblation control group (n = 18). Nucleoplasty using coblation was performed in the coblation group. L4-5 and L5-6 intervertebral disk samples were harvested and analyzed for PLA2 activity in different groups at different time points.

RESULTS: The PLA2 activity in the coblation control group was significantly higher than that in the control group (194.86 ± 11.80 and 80.68 ± 5.56, respectively; P < 0.01). There was a significant decrease in the PLA2 activity 1 week after coblation than at the real time after coblation (154.39 ± 7.99 and 184.98 ± 9.43, respectively; P < 0.001). The PLA2 activity at 1 month after coblation remained at a lower level than those at 1 week and at the real time after coblation (142.63 ± 10.72, 154.39 ± 7.99, and 184.98 ± 9.43, respectively), but there was no significant decrease in the PLA2 activity between 1 week and 1 month after coblation.

CONCLUSIONS: Coblation appeared to effectively degrade the PLA2 activity in the degenerative intervertebral disks of this animal model. This represents a potential mechanism for the clinical use of coblation in the treatment of low back pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app