JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Binding mode analysis of anti-influenza drugs in H1N1 (2009) and H5N1 influenza A virus and designing of potential H1N1 inhibitors.

The main goal of this study is to understand the molecular-level interactions of neuraminidase inhibitor. The molecular docking, molecular dynamics and binding energy calculation analyses were carried out and the results revealed that the 150-cavitiy in the active site may play an important role in binding of drugs. Free energy calculations revealed that electrostatic interaction is more favourable for Oseltamivir interaction with H1N1 and van der Waals interaction is more favourable for H5N1, whereas Zanamivir favours the electrostatic interaction in both the strains (H1N1 and H5N1). Energy-optimised pharmacophore mapping was created using Oseltamivir drug. The pharmacophore model contained two hydrogen-bond acceptor and two hydrogen bond donor sites. Using these pharmacophore features, we screened a compound database to find a potential ligand that could inhibit the H1N1 protein. The current research will pave the way to find potent neuraminidase inhibitors against H1N1 (2009) strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app