JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Isotopocule analysis of biologically produced nitrous oxide in various environments.

Natural abundance ratios of isotopocules, molecules that have the same chemical constitution and configuration, but that only differ in isotope substitution, retain a record of a compound's origin and reactions. A method to measure isotopocule ratios of nitrous oxide (N2 O) has been established by using mass analysis of molecular ions and fragment ions. The method has been applied widely to environmental samples from the atmosphere, ocean, fresh water, soils, and laboratory-simulation experiments. Results show that isotopocule ratios, particularly the 15 N-site preference (difference between isotopocule ratios 14 N15 N16 O/14 N14 N16 O and 15 N14 N16 O/14 N14 N16 O), have a wide range that depends on their production and consumption processes. Observational and laboratory studies of N2 O related to biological processes are reviewed and discussed to elucidate complex material cycles of this trace gas, which causes global warming and stratospheric ozone depletion. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:135-160, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app