JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nanostructure and salt effect of zwitterionic carboxybetaine brush at the air/water interface.

Zwitterionic amphiphilic diblock copolymer, poly(ethylhexyl acrylate)-b-poly(carboxybetaine) (PEHA-b-PGLBT), was synthesized by the reversible addition-fragmentation chain transfer (RAFT) method with precise control of block length and polydispersity. The polymers thus obtained were spread onto the water surface to form a polymer monolayer. The fundamental property and nanostructure of the block copolymer monolayer were systematically studied by the surface pressure-molecular area (π-A) isotherm, Brewster angle microscopy (BAM), and X-ray reflectivity (XR) techniques. The π values of the monolayer increased by compression in relatively larger A regions. After showing a large plateau region by compression, the π value sharply increased at very small A regions, suggesting the formation of poly(GLBT) brush formation just beneath the water surface. The domain structure of μm size was observed by BAM in the plateau region. XR profiles for the monolayer at higher surface pressure regions clearly showed the PGLBT brush formation in addition to PGLBT carpet layer formation under the hydrophobic PEHA layer on the water surface, as was observed for both anionic and cationic brush layer in the water surface monolayer studied previously. The critical brush density, where the PGLBT brush is formed, was estimated to be about 0.30 chains/nm(2) for the (EHA)45-b-(GLBT)60 monolayer, which is relatively large compared to other ionic brushes. This observation is consistent with the fact that the origin of brush formation is mainly steric hindrance between brush chains. The brush thickness increased by compression and also by salt addition, unlike the normal ionic brush (anionic and cationic), whose thickness tended to decrease, i.e., shrink, by salt addition. This might be a character unique to the zwitterionic brush, and its origin is thought to be transition to an ionic nature from the almost nonionic inner salt caused by salt addition since both the cation and anion of the GLBT chain obtained counterions by the addition of salt. This stretching nature of the PGLBT brush depends on the ion species of the salt added, and it followed the Hofmeister series, i.e., more stretching in the order of Li(+) > Na(+) > K(+). However, it was rather insensitive to the anion species (Cl(-), Br(-), SCN(-)), which suggests that the carboxylic anion has a more dominant effect than the quaternized cation in GLBT although the former is a weak acid and the latter is believed to be a strong base.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app