Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of B-Raf/MEK/ERK signaling suppresses DR5 expression and impairs response of cancer cells to DR5-mediated apoptosis and T cell-induced killing.

Oncogene 2016 January 29
Inhibition of B-Raf/MEK/ERK signaling is an effective therapeutic strategy against certain types of cancers such as melanoma and thyroid cancer. While demonstrated to be effective anticancer agents, B-Raf or MEK inhibitors have also been associated with early tumor progression and development of secondary neoplasms. The ligation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with its receptor, death receptor 5 (DR5), leading to induction of apoptosis, offers a promising anticancer strategy. Importantly, this is also a natural immunosurveillance mechanism against cancer development. We previously demonstrated that activated B-Raf/MEK/ERK signaling positively regulates DR5 expression. Hence, our current work sought to address whether B-Raf/MEK/ERK inhibition and the consequent suppression of DR5 expression impede cancer cell response to DR5 activation-induced apoptosis and activated immune cell-induced killing. We found that both B-Raf (for example, PLX4032) and MEK inhibitors (for example, AZD6244 and PD0325901) effectively inhibited ERK1/2 phosphorylation and reduced DR5 levels in both human thyroid cancer and melanoma cells. Similar to the observed effect of genetic knockdown of the B-Raf gene, pre-treatment of cancer cell lines with either B-Raf or MEK inhibitors attenuated or abolished cellular apoptotic response induced by TRAIL or the DR5 agonistic antibody AMG655 or cell killing by activated T cells. Our findings clearly show that inhibition of B-Raf/MEK/ERK signaling suppresses DR5 expression and impairs DR5 activation-induced apoptosis and T cell-mediated killing of cancer cells. These findings suggest a potential negative impact of B-Raf or MEK inhibition on TRAIL- or DR5-mediated anticancer therapy and on TRAIL/DR5-mediated immune-clearance of cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app