Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lipoprotein associated phospholipase A2 activity & its correlation with oxidized LDL & glycaemic status in early stages of type-2 diabetes mellitus.

BACKGROUND & OBJECTIVES: Lipoprotein associated phospholipase A 2 (Lp-PLA 2 ) is an important risk predictor of coronary artery disease (CAD). This study was aimed to evaluate Lp-PLA 2 activity and oxidized low density lipoprotein (oxLDL) in newly diagnosed patients of type 2 diabetes mellitus and to determine the correlation of Lp-PLA 2 activity with oxLDL and plasma glucose levels.

METHODS: Blood samples were collected in patients with newly diagnosed type 2 diabetes (n=40) before any treatment was started and healthy controls (n=40). These were processed for estimating plasma glucose: fasting and post prandial, ox LDL, and Lp-PLA2 activity. The parameters in the two groups were compared. Correlation between different parameters was calculated by Pearson correlation analysis in both groups.

RESULTS: Lp-PLA 2 activity (24.48 ± 4.91 vs 18.63 ± 5.29 nmol/min/ml, P<0.001) and oxLDL levels (52.46 ± 40.19 vs 33.26 ± 12.54 μmol/l, P<0.01) were significantly higher in patients as compared to those in controls. Lp-PLA 2 activity correlated positively with oxLDL in both controls (r=0.414, P<0.01), as well in patients (r=0.542, P<0.01). A positive correlation between Lp-PLA 2 activity and fasting plasma glucose levels was observed only in patients (r=0.348, P<0.05).

INTERPRETATION & CONCLUSIONS: Result of this study implies that higher risk of CAD in patients with diabetes may be due to increase in Lp-PLA 2 activity during the early course of the disease. A positive correlation between enzyme activity and fasting plasma glucose indicates an association between hyperglycaemia and increased activity of Lp-PLA2. This may explain a higher occurrence of CAD in patients with diabetes. A positive correlation between oxLDL and Lp-PLA2 activity suggests that Lp-PLA2 activity may be affected by oxLDL also.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app