CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Growth hormone deficiency in monozygotic twins with autosomal dominant pseudohypoparathyroidism type Ib.

Pseudohypoparathyroidism (PHP) is associated with compromised signal transductions via PTH receptor (PTH-R) and other G-protein-coupled receptors including GHRH-R. To date, while GH deficiency (GHD) has been reported in multiple patients with PHP-Ia caused by mutations on the maternally expressed GNAS coding regions and in two patients with sporadic form of PHP-Ib accompanied by broad methylation defects of maternally derived GNAS differentially methylated regions (DMRs), it has not been identified in a patient with an autosomal dominant form of PHP-Ib (AD-PHP-Ib) accompanied by an STX16 microdeletion and an isolated loss of methylation (LOM) at exon A/B-DMR. We studied 5 4/12-year-old monozygotic twins with short stature (both -3.4 SD) and GHD (peak GH values, <6.0 μg/L after arginine and clonidine stimulations). Molecular studies revealed maternally derived STX16 microdeletions and isolated LOMs at exon A/B-DMR in the twins, confirming the diagnosis of AD-PHP-Ib. GNAS mutation was not identified, and neither mutation nor copy number variation was detected in GH1, POU1F1, PROP1, GHRHR, LHX3, LHX4, and HESX1 in the twins. The results, in conjunction with the previous finding that GNAS shows maternal expression in the pituitary, suggest that GHD of the twins is primarily ascribed to compromised GHRH-R signaling caused by AD-PTH-Ib. Thus, resistance to multiple hormones including GHRH should be considered in AD-PHP-Ib.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app