JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation.

The emplacement of nano zerovalent iron (nZVI) for groundwater remediation is usually monitored by common measurements such as pH, total iron content, and oxidation-reduction potential (ORP) by potentiometry. However, the interpretation of such measurements can be misleading because of the complex interactions between the target materials (e.g., suspensions of highly reactive and variably aggregated nanoparticles) and aquifer materials (sediments and groundwater), and multiple complications related to sampling and detection methods. This paper reviews current practice for both direct and indirect characterizations of nZVI during groundwater remediation and explores prospects for improving these methods and/or refining the interpretation of these measurements. To support our recommendations, results are presented based on laboratory batch and column studies of nZVI detection using chemical, electrochemical, and geophysical methods. Chemical redox probes appear to be a promising new method for specifically detecting nZVI, based on laboratory tests. The potentiometric and voltammetric detections of iron nanoparticles, using traditional stationary disc electrodes, rotating disc electrodes, and flow-through cell disc electrodes, provide insight for interpreting ORP measurements, which are affected by solution chemistry conditions and the interactions between iron nanoparticles and the electrode surface. The geophysical methods used for characterizing ZVI during groundwater remediation are reviewed and its application for nZVI detection is assessed with results of laboratory column experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app