JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase.

A powerful alternative means to study the hemodynamics of bileaflet mechanical heart valves is the computational fluid dynamics method. It is well recognized that computational fluid dynamics allows reliable physiological blood flow simulation and measurements of flow parameters. To date, in almost all of the modeling studies on the hemodynamics of bileaflet mechanical heart valves, a velocity (mass flow)-based boundary condition and an axisymmetric geometry for the aortic root have been assigned, which, to some extent, are erroneous. Also, there have been contradictory reports of the profile of velocity in downstream of leaflets, that is, in some studies, it is suggested that the maximum blood velocity occurs in the lateral orifice, and in some other studies, it is postulated that the maximum velocities in the main and lateral orifices are identical. The reported values for the peak velocities range from 1 to 3 m/s, which highly depend on the model assumptions. The objective of this study is to demonstrate the importance of the exact anatomical model of the aortic root and the realistic boundary conditions in the hemodynamics of the bileaflet mechanical heart valves. The model considered in this study is based on the St Jude Medical valve in a novel modeling platform. Through a more realistic geometrical model for the aortic root and the St Jude Medical valve, we have developed a new set of boundary conditions in order to be used for the assessment of the hemodynamics of aortic bileaflet mechanical heart valves. The results of this study are significant for the design improvement of conventional bileaflet mechanical heart valves and for the design of the next generation of prosthetic valves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app