JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ras/ERK1/2 pathway regulates the self-renewal of dairy goat spermatogonia stem cells.

Reproduction 2015 May
Spermatogonia stem cells (SSCs), also named the male germline stem cells (mGSCs), which is located at the base of the seminiferous tubules of testis, is the basis for generating sperm steadily in male animals. Currently, there are some preliminary study on the self-renewal and differentiation of SSCs, but further mechanism, especially in large animals, has not been clearly understood. Ras/ERK1/2 pathway is widely distributed in multiple cells in vivo. It plays an important role in cell proliferation, differentiation and so on. However, the study on the function for the self-renewal of dairy goats SSCs has not been investigated. In this study, the dairy goat SSCs characterization were evaluated by semi-RT-PCR, alkaline phosphatase (AP) staining, and immunofluorescence staining. Then, Ras/ERK1/2 pathway was blocked by specific MEK1/2 inhibitor PD0325901. We analyzed the proliferation by cell number, cell growth curve, Brdu incorporation assay, and cell cycle analysis. The results showed that the proliferation was significantly inhibited by PD0325901. Cell apoptosis induced by blocking the Ras/ERK1/2 pathway was analyzed by TUNEL. The expression of ETV5 and BCL6B, the downstream gene of Ras/ERK1/2 pathway, was downregulated. This study suggest that the Ras/ERK1/2 pathway plays a critical role in maintaining the self-renewal of dairy goat SSCs via regulation of ETV5 and BCL6B. This study laid a foundation for insights into the mechanism of SSCs self-renewal comprehensively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app