Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system.

Developmental Biology 2015 December 16
Neurogenesis in the brain of Xenopus laevis continues throughout larval stages of development. We developed a 2-tier screen to identify candidate genes controlling neurogenesis in Xenopus optic tectum in vivo. First, microarray and NanoString analyses were used to identify candidate genes that were differentially expressed in Sox2-expressing neural progenitor cells or their neuronal progeny. Then an in vivo, time-lapse imaging-based screen was used to test whether morpholinos against 34 candidate genes altered neural progenitor cell proliferation or neuronal differentiation over 3 days in the optic tectum of intact Xenopus tadpoles. We co-electroporated antisense morpholino oligonucleotides against each of the candidate genes with a plasmid that drives GFP expression in Sox2-expressing neural progenitor cells and quantified the effects of morpholinos on neurogenesis. Of the 34 morpholinos tested, 24 altered neural progenitor cell proliferation or neuronal differentiation. The candidates which were tagged as differentially expressed and validated by the in vivo imaging screen include: actn1, arl9, eif3a, elk4, ephb1, fmr1-a, fxr1-1, fbxw7, fgf2, gstp1, hat1, hspa5, lsm6, mecp2, mmp9, and prkaca. Several of these candidates, including fgf2 and elk4, have known or proposed neurogenic functions, thereby validating our strategy to identify candidates. Genes with no previously demonstrated neurogenic functions, gstp1, hspa5 and lsm6, were identified from the morpholino experiments, suggesting that our screen successfully revealed unknown candidates. Genes that are associated with human disease, such as such as mecp2 and fmr1-a, were identified by our screen, providing the groundwork for using Xenopus as an experimental system to probe conserved disease mechanisms. Together the data identify candidate neurogenic regulatory genes and demonstrate that Xenopus is an effective experimental animal to identify and characterize genes that regulate neural progenitor cell proliferation and differentiation in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app