Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Progression of matrixin and cardiokine expression patterns in an ovine model of heart failure and recovery.

BACKGROUND: The molecular mechanisms underlying the geometrical changes of the left ventricle during the progression to heart failure and recovery are not well defined.

OBJECTIVE: Here we investigate the involvement of matrixins and cardiokines in an ovine model of pressure-induced left ventricular failure (LVF).

METHODS: Fifteen sheep underwent supracoronary aortic banding with an inflatable cuff. A controlled and progressive increase of LV pressure was monitored echocardiographically. Endomyocardial biopsies were collected throughout the development of LVF and subsequent recovery after pressure unloading.

RESULTS: Thirteen sheep developed LVF with a subsequent recovery. Peak left ventricular hypertrophy (LVH) and dilatation (LVD) occurred at 31.5 ± 1.6 weeks and 102.7 ± 2.2 weeks post-banding respectively, with an increase in LV internal diameter in diastole (LVIDd 5.11 ± 0.12 compared to the control 3.37 ± 0.07 cm, p<0.001), with preserved LV ejection fraction (LVEF). Reduced LVEF became evident 116.5 ± 2.7 weeks post-banding. Clinical and echocardiographic improvements were observed following deflation of the aortic banding cuff. By 138.1 ± 3.1 weeks cardiac performance recovered with restoration of LVEF. Significant changes in the expression of matrix metalloproteinases (MMP)-1, -2, -3, vascular endothelial cell growth factor (VEGF), fibroblast growth factor (FGF)-2, interferon (INF)-α-2 and soluble CD40 ligand (sCD40L) were observed throughout the progression to failure and recovery.

CONCLUSIONS: We used an ovine model to study reversible LV remodelling without interruption and found significant changes in matrixin and cardiokine expression during LV progression to failure and recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app