COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Increased PTPN22 expression and defective CREB activation impair regulatory T-cell differentiation in non-ST-segment elevation acute coronary syndromes.

BACKGROUND: Critical impairment of adaptive immune response has been observed in patients with acute coronary syndromes (ACS) with reduced expansion of regulatory T cells (Treg) and enhanced effector T-cell responsiveness, both associated with poorer outcomes.

OBJECTIVES: This study investigated the mechanisms underlying T-cell dysregulation in ACS.

METHODS: We evaluated both early and downstream T-cell receptor activation pathways after ex vivo stimulation with anti-CD3 and anti-CD28 crosslink in CD4(+) T cells from 20 patients with non-ST-segment elevation myocardial infarction (NSTEMI), 20 with stable angina (SA), and 20 controls. We reassessed 10 NSTEMI and 10 SA patients after 1 year.

RESULTS: Phospho-flow analysis revealed reduced phosphorylation of the zeta-chain-associated protein kinase of 70 kDa at the inhibitory residue tyrosine 292, enhancing T-cell activation, in NSTEMI helper T cells versus SA and controls (each, p < 0.001), resulting from increased expression of the protein tyrosine phosphatase, nonreceptor type, 22 (PTPN22) (p < 0.001 for both comparisons), persisting at follow-up. We also observed reduced phosphorylation (p < 0.001 versus controls) and lower levels of binding to interleukins 2 and 10 core promoter regions of the transcription factor cyclic adenosine monophosphate response element-binding protein (CREB) in NSTEMI (p < 0.05 vs. controls), which recovered at 1 year. Finally, in NSTEMI patients, helper T cells had a reduced ability in T-cell receptor-induced Treg generation (p = 0.002 vs. SA; p = 0.001 vs. controls), partially recovered at 1 year. Restoring CREB activity and silencing PTPN22 enhanced NSTEMI patients' ability to generate Treg.

CONCLUSIONS: The persistent overexpression of PTPN22 and the transient reduction of CREB activity, associated with impaired Treg differentiation, might play a role in ACS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app