Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Polymeric nanoparticle drug delivery technologies for oral delivery applications.

INTRODUCTION: Many therapeutics are limited to parenteral administration. Oral administration is a desirable alternative because of the convenience and increased compliance by patients, especially for chronic diseases that require frequent administration. Polymeric nanoparticles (NPs) are one technology being developed to enable clinically feasible oral delivery.

AREAS COVERED: This review discusses the challenges associated with oral delivery. Strategies used to overcome gastrointestinal (GI) barriers using polymeric NPs will be considered, including mucoadhesive biomaterials and targeting of NPs to transcytosis pathways associated with M cells and enterocytes. Applications of oral delivery technologies will also be discussed, such as oral chemotherapies, oral insulin, treatment of inflammatory bowel disease, and mucosal vaccinations.

EXPERT OPINION: There have been many approaches used to overcome the transport barriers presented by the GI tract, but most have been limited by low bioavailability. Recent strategies targeting NPs to transcytosis pathways present in the intestines have demonstrated that it is feasible to efficiently transport both therapeutics and NPs across the intestines and into systemic circulation after oral administration. Further understanding of the physiology and pathophysiology of the intestines could lead to additional improvements in oral polymeric NP technologies and enable the translation of these technologies to clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app