Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Bone and morphogenetic protein signalling and muscle mass.

PURPOSE OF REVIEW: The purpose of this study is to discuss the involvement of bone and morphogenetic proteins (BMPs) in the control of muscle mass.

RECENT FINDINGS: The transforming growth factor-beta (TGFβ) superfamily comprises a large number of secreted proteins that regulate a variety of fundamental biological processes. Sequence similarities define two ligand subfamilies: the TGFβ/Activin subfamily and the BMP subfamily. Within the members of TGFβ subfamily, myostatin emerged as the most critical ligand that affects muscle size and function. Indeed, mutations that inactivate Myostatin lead to important muscle growth in animals and humans. However, recent findings have increased the complexity of the TGFβ superfamily. Indeed, two independent groups have shown that BMP pathway, acting through Smad1/5/8, is the fundamental hypertrophic signal and dominates Myostatin signalling. Moreover, BMP-Smad1/5/8 negatively regulates a novel ubiquitin ligase, named MUSA1 that is required for muscle loss. This article reviews the rapid progress made in the last year regarding the signalling downstream TGFβ superfamily and its involvement in the homeostasis of adult muscle fibres.

SUMMARY: The recent insights gained into the interplay of TGFβ and BMP signalling in muscle have challenged our pre-existing ideas of how the adult skeletal muscle phenotype is regulated in health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app