JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Circulating tumor cell isolation during resection of colorectal cancer lung and liver metastases: a prospective trial with different detection techniques.

BACKGROUND: Colorectal cancer (CRC) metastasectomy improves survival, however most patient develop recurrences. Circulating tumor cells (CTCs) are an independent prognostic marker in stage IV CRC. We hypothesized that CTCs can be enriched during metastasectomy applying different isolation techniques.

METHODS: 25 CRC patients undergoing liver (16 (64%)) or lung (9 (36%)) metastasectomy were prospectively enrolled (clinicaltrial.gov identifier: NCT01722903). Central venous (liver) or radial artery (lung) tumor outflow blood (7.5 ml) was collected at incision, during resection, 30 min after resection, and on postoperative day (POD) 1. CTCs were quantified with 1. EpCAM-based CellSearch® system and 2. size-based isolation with a novel filter device (FMSA). CTCs were immunohistochemically identified using CellSearch®'s criteria (cytokeratin 8/18/19+, CD45- cells containing a nucleus (DAPI+)). CTCs were also enriched with a centrifugation technique (OncoQuick®).

RESULTS: CTC numbers peaked during the resection with the FMSA in contrast to CellSearch® (mean CTC number during resection: FMSA: 22.56 (SEM 7.48) (p = 0.0281), CellSearch®: 0.87 (SEM ± 0.44) (p = 0.3018)). Comparing the 2 techniques, CTC quantity was significantly higher with the FMSA device (range 0-101) than CellSearch® (range 0-9) at each of the 4 time points examined (P < 0.05). Immunofluorescence staining of cultured CTCs revealed that CTCs have a combined epithelial (CK8/18/19) and macrophage (CD45/CD14) phenotype.

CONCLUSIONS: Blood sampling during CRC metastasis resection is an opportunity to increase CTC capture efficiency. CTC isolation with the FMSA yields more CTCs than the CellSearch® system. Future studies should focus on characterization of single CTCs to identify targets for molecular therapy and immune escape mechanisms of cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app