Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-diabetic efficacy of KICG1338, a novel glycogen synthase kinase-3β inhibitor, and its molecular characterization in animal models of type 2 diabetes and insulin resistance.

Selective inhibition of glycogen synthase kinase-3 (GSK3) has been targeted as a novel therapeutic strategy for diabetes mellitus. We investigated the anti-diabetic efficacy and molecular mechanisms of KICG1338 (2-(4-fluoro-phenyl)-3H-imidazo[4,5-b]pyridine-7-carboxylic acid(4-methyl-pyridin-3-yl)-amide), a GSK3β inhibitor, in three animal models: Otsuka Long-Evans Tokushima Fatty (OLETF) rats, leptin receptors-deficient db/db mice, and diet-induced obese (DIO) mice. Biochemical parameters including glucose tolerance tests and gene expressions associated with glucose metabolism were investigated. Glucose excursion decreased significantly by KICG1338-treated OLETF rats, accompanied by increase in insulin receptor substrate-1 and glucose transporter (GLUT)-4 expressions in muscle and decreased GLUT-2 expression in liver. Glucose-lowering effects were similarly observed in KICG1338-treated db/db and DIO mice. KICG1338 treatment increased adiponectin levels and decreased TNF-α levels. KICG1338 therapy also led to greater β-cell preservation and less hepatic fat infiltration with decreased expressions of genes involved in inflammation and endoplasmic reticulum stress. These data demonstrate anti-diabetic efficacy of KICG1338, a novel GSK3β inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app