Add like
Add dislike
Add to saved papers

Dysregulation of methylation and expression of imprinted genes in oocytes and reproductive tissues in mice of advanced maternal age.

PURPOSE: To evaluate reproductive outcomes in aged compared to young female mice, and determine associated methylation and expression of imprinted genes in reproductive tissues.

METHODS: Fetal, placental, and ovarian tissue were collected on d16.5 of pregnancy from young (4-5 weeks) and aged (15 months) mice. Uterine tissue and in vivo matured oocytes were collected from non-pregnant females. Methylation of imprinted genes was determined by restriction enzyme based assays, and transcript abundance of imprinted and nutrient supply genes were analyzed by quantitative PCR (qPCR).

RESULTS: Maternal age was associated with fetal growth restriction and placental overgrowth. In maternally aged mice, methylation was minimally dysregulated in fetal tissue, while placental tissue showed aberrant methylation and transcript abundance of imprinted genes. Ovarian methylation and gene expression was severely dysregulated, although oocyte gene expression was only minimally altered. Abundance of Kcnq1 transcripts was significantly (P < 0.05) increased in oocytes obtained from aged females compared to young females. Gene expression was also severely dysregulated in the uterus, including nutrient transport genes.

CONCLUSION: Fetal and placental growth abnormalities correspond to aberrant methylation and gene expression in reproductive tissues from maternally aged mice. Significant alterations in gene expression and methylation in the aged ovary suggests that the follicular environment may be compromised. Aberrant methylation and expression of imprinted genes in the aged uterus may contribute to reduced implantation. Maternal age negatively affects imprinted gene methylation and expression in both germ cells and somatic cells of the reproductive tract, contributing to the reduced fertility observed with advanced maternal age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app