Add like
Add dislike
Add to saved papers

Successful transplantation of motoneurons into the peripheral nerve depends on the number of transplanted cells.

Transplantation of motoneurons (MN) into the peripheral nerve to provide a source of neurons for muscle reinnervation, termed motoneuron integrated striated muscle (MISM), may provide the potential to restore functional muscle activity, when combined with computer-programmed functional electrical stimulation (FES). The number of MNs required to restore innervation to denervated muscles in adult Fischer 344 rats was investigated by comparing two groups, one transplanted with 2 × 10(5) cells (group A) and the other with 1 × 10(6) cells (group B). Twelve weeks after transplantation, electrophysiological analysis, muscle function analysis, and tissue analysis were performed. The mean motor nerve conduction velocity was faster (12.4 ± 1.0 m/s vs. 8.5 ± 0.7 m/s, P = 0.011) and the mean amplitude of compound muscle action potential was larger (1.6 ± 0.4 mV vs. 0.7 ± 0.2 mV, P = 0.034) in group B. The dorsiflexed ankle angle was larger in group B (27 ± 5° vs. 75 ± 8°, P = 0.02). The mean myelinated axon number in the peroneal nerve and the proportion of reinnervated motor end plates were also greater in group B (317 ± 33 vs. 104 ± 17, 87.5 ± 3.4% vs. 40.6 ± 7.7%; P < 0.01, respectively). When sufficient MNs are transplanted into the peripheral nerve, MISM forms functional motor units. MISM, in conjunction with FES, provides a new treatment strategy for paralyzed muscles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app