Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME Study.

Bisphenol A (BPA), an endocrine disruptor used in consumer products, may perturb thyroid function. Prenatal BPA exposure may have sex-specific effects on thyroid hormones (THs). Our objectives were to investigate whether maternal urinary BPA concentrations during pregnancy were associated with THs in maternal or cord serum, and whether these associations differed by newborn sex or maternal iodine status. We measured urinary BPA concentrations at 16 and 26 weeks gestation among pregnant women in the HOME Study (2003-2006, Cincinnati, Ohio). Thyroid stimulating hormone (TSH) and free and total thyroxine (T4) and triiodothyronine (T3) were measured in maternal serum at 16 weeks (n=181) and cord serum at delivery (n=249). Associations between BPA concentrations and maternal or cord serum TH levels were estimated by multivariable linear regression. Mean maternal urinary BPA was not associated with cord THs in all newborns, but a 10-fold increase in mean BPA was associated with lower cord TSH in girls (percent change=-36.0%; 95% confidence interval (CI): -58.4, -1.7%), but not boys (7.8%; 95% CI: -28.5, 62.7%; p-for-effect modification=0.09). We observed no significant associations between 16-week BPA and THs in maternal or cord serum, but 26-week maternal BPA was inversely associated with TSH in girls (-42.9%; 95% CI: -59.9, -18.5%), but not boys (7.6%; 95% CI: -17.3, 40.2%; p-for-effect modification=0.005) at birth. The inverse BPA-TSH relation among girls was stronger, but less precise, among iodine deficient versus sufficient mothers. Prenatal BPA exposure may reduce TSH among newborn girls, particularly when exposure occurs later in gestation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app