JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cranial irradiation regulates CREB-BDNF signaling and variant BDNF transcript levels in the mouse hippocampus.

The brain can be exposed to ionizing radiation in various ways, and such irradiation can trigger adverse effects, particularly on learning and memory. However, the precise mechanisms of cognitive impairments induced by cranial irradiation remain unknown. In the hippocampus, brain-derived neurotrophic factor (BDNF) plays roles in neurogenesis, neuronal survival, neuronal differentiation, and synaptic plasticity. The significance of BDNF transcript variants in these contexts is becoming clearer. In the present study, both object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice were assessed 1 month after a single exposure to cranial irradiation (10 Gy) to evaluate hippocampus-related behavioral dysfunction following such irradiation. Furthermore, changes in the levels of BDNF, the cAMP-response element binding protein (CREB) phosphorylation, and BDNF transcript variants were measured in the hippocampus 1 month after cranial irradiation. On object recognition memory and contextual fear conditioning tasks, mice evaluated 1 month after irradiation exhibited significant memory deficits compared to sham-irradiated controls, but no apparent change was evident in locomotor activity. Both phosphorylated CREB and BDNF protein levels were significantly downregulated after irradiation of the hippocampus. Moreover, the levels of mRNAs encoding common BDNF transcripts, and exons IIC, III, IV, VII, VIII, and IXA, were significantly downregulated after irradiation. The reductions in CREB phosphorylation and BDNF expression induced by differential regulation of BDNF hippocampal exon transcripts may be associated with the memory deficits evident in mice after cranial irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app