Add like
Add dislike
Add to saved papers

Influence of first proximal phalanx geometry on hallux valgus deformity: a finite element analysis.

Hallux abducto valgus (HAV), one of the most common forefoot deformities, occurs primarily in elderly women. HAV is a complex disease without a clearly identifiable cause for its higher prevalence in women compared with men. Several studies have reported various skeletal parameters related to HAV. This study examined the geometry of the proximal phalanx of the hallux (PPH) as a potential etiologic factor in this deformity. A total of 43 cadaver feet (22 males and 21 females) were examined by means of cadaveric dissection. From these data, ten representative PPHs for both genders were selected, corresponding to five percentiles for males (0, 25, 50, 75, and 100%) and five for females. These ten different PPHs were modeled and inserted in ten foot models. Stress distribution patterns within these ten PPH models were qualitatively compared using finite element analysis. In the ten cases analyzed, tensile stresses were larger on the lateral side, whereas compressive stresses were larger on the medial side. The bones of males were larger than female bones for each of the parameters examined; however, the mean difference between lateral and medial sides of the PPH (mean ± SD) was larger in women. Also the shallower the concavity at the base of the PPH, the larger the compressive stresses predicted. Internal forces on the PPH, due to differences in length between its medial and lateral sides, may force the PPH into a less-stressful position. The geometry of the PPH is a significant factor in HAV development influencing the other reported skeletal parameters and, thus, should be considered during preoperative evaluation. Clinical assessment should evaluate the first ray as a whole and not as isolated factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app