JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Organ-protective effects on the liver and kidney by minocycline in small piglets undergoing cardiopulonary bypass.

Cardiopulmonary bypass (CPB) often is required for the operative correction of congenital heart defects in small infants. Unfortunately, CPB is associated with injury of inner organs such as the brain, kidney, lung, and liver. Renal failure and increase in liver enzymes are typical side effects observed after CPB. Here, we investigate whether organ protection of the kidney and liver can be achieved with the application of minocycline, which is known-besides its anti-infective effects-to act as a poly-ADP-ribose-polymerase inhibitor. Twenty-nine 4-week-old Angler Sattelschwein-piglets (8-15 kg) were divided into four groups: control group (n = 8), CPB group (n = 9), minocycline-control group (n = 6), and the minocycline-CPB group (n = 6). CPB groups were thoracotomized and underwent CPB for 120 min (cross-clamp, 90 min; reperfusion, 30 min) followed by a 90-min recovery time. The control groups also were thoracotomized but not connected to CPB. The minocycline group received 4 mg/kg minocycline before and 2 mg/kg after CPB. In the kidneys, CPB histologically resulted in widening of Bowman's capsule, and-mainly in tubules-formation of poly-ADP-ribose, nitrosylation of tyrosine-residues, nuclear translocation of hypoxia-induced factor HIF-1α, and of apoptosis-inducing factor (AIF). In addition, we found significantly less ATP in the kidney and significantly increased plasma urea and creatinine. Similar but gradually attenuated changes were found in the liver together with significantly elevated de-Ritis coefficient. These changes in the kidney and liver were significantly diminished by minocycline (except AIF in the liver which was similar in all groups). In conclusion, CPB causes damage in the kidney and-to a lower degree-in the liver, which can be attenuated by minocycline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app