JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds.

Ascorbate and tocopherol are important hydrophilic or lipophilic antioxidants in plants, while their crucial roles in the antioxidant defense system under ultraviolet B radiation were not well understood. The mutants of Arabidopsis thaliana deficient in ascorbate (vtc1 and vtc2) or tocopherol (vte1) were used to analyze their physiological, biochemical and metabolic change in responses to Ultraviolet B radiation. Results showed that loss of either ascorbate or tocopherol caused reduction in phenylpropanoid and flavonol glycosides compounds, as well as reduction in superoxide dismutase activity and total cellular antioxidant capacity. This ultimately led to higher oxidative stress as well as lower levels of photosynthetic pigments (carotenoid and chlorophyll) and CO2 assimilation rate in the vtc1, vtc2, and vte1 mutants than the wild type under UV-B radiation, besides unstable early light-induced protein (ELIP1) in those mutants. On the other hand, the loss of tocopherol in vte1 mutants was compensated by the increase of zeaxanthin and anthocyanin contents, which armed vte1 mutants with higher heat dissipation capacity in PS II and higher antioxidative capacity than vtc mutants. Consequently the tolerance to UV-B radiation were much higher in vte1 mutant than in vtc mutants, furthermore, PS II function and light harvesting protein (LHCb1) abundance were reduced only in ascorbate-deficient mutant relative to wild type. Our results suggested that the ascorbate and tocopherol provided not only direct protective function against UV-B radiation but also indirect effects by influencing other protective system, in particular by affecting the stability of various carotenoid and phenylpropanoid compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app