COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optical coherence tomography for evaluation of enamel and protective coatings.

Optical coherence tomography (OCT) is an interferometric imaging technique. This study aimed to employ OCT to evaluate four different resin-based materials including a coating containing glass-ionomer filler and calcium, a giomer, and two fluoride-releasing self-etch resins. The coating and its underlying and adjacent enamel were monitored using swept-source OCT (center wavelength: 1330 nm) at baseline, after 5,000 thermal cycles, and after 1, 4 and 7 days of demineralization (pH 4.5). The coatings showed different thicknesses (60-250 micrometers) and various levels of structural and interfacial integrity. OCT could detect a demineralization inhibition zone adjacent to the edge of the fluoride- and calcium-releasing material. Localized demineralization was occasionally observed under thinner coatings. Protection of susceptible enamel surfaces by thin resin-based bioactive coatings provides protection from demineralization. OCT can be used to non-destructively monitor the integrity of such coatings, as well as enamel changes beneath and adjacent to them.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app