Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Pattern segmentation with activity dependent natural frequency shift and sub-threshold resonance.

Understanding the mechanisms underlying distributed pattern formation in brain networks and its content driven dynamical segmentation is an area of intense study. We investigate a theoretical mechanism for selective activation of diverse neural populations that is based on dynamically shifting cellular resonances in functionally or structurally coupled networks. We specifically show that sub-threshold neuronal depolarization from synaptic coupling or external input can shift neurons into and out of resonance with specific bands of existing extracellular oscillations, and this can act as a dynamic readout mechanism during information storage and retrieval. We find that this mechanism is robust and suggest it as a general coding strategy that can be applied to any network with oscillatory nodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app